SOME COMPLEMENTS TO BROUWER'S FIXED POINT THEOREM

BY HERBERT ROBBINS

ABSTRACT

The sets which can be the fixed points of a continuous function or a homeomorphism of B^n are investigated.

We present some elementary complements to Brouwer's fixed point theorem in *n*-space.

Let $B^n = \text{all points } P = (x_1, \dots, x_n)$ with $||P||^2 = \sum_{i=1}^n x_i^2 \le 1$ and $S^{n-1} = \text{all } P$ with ||P|| = 1. If $f: B^n \to B^n$ is any continuous map of B^n into itself, the fixed point set A of f is the set of all $P \in B^n$ such that f(P) = P. Clearly, A is closed, and by Brouwer's theorem, non-empty.

THEOREM 1. For any $n \ge 1$ and any non-empty closed set $A \subset B^n$, there is a continuous map $f: B^n \to B^n$ with A as its fixed point set.

Proof. Define

$$d(P,A) = \inf_{Q \in A} ||P - Q||.$$

Then d(P, A) is a continuous function of P, and d(P, A) = 0 iff $P \in A$. Choose any $Q \in A$, and define $f: B^n \to B^n$ by setting

(1)
$$f(P) = \begin{cases} P + d(P, A) \frac{(Q - P)}{\|P - Q\|} & \text{for } P \neq Q, \\ Q & \text{for } P = Q. \end{cases}$$

Then f is continuous and has A as its fixed point set.

THEOREM 2. For any odd n there is a non-empty closed set $A \subset B^n$ which is not the fixed point set of any homeomorphism $f: B^n \to B^n$.

Proof. Let A consist of all points P with $||P|| \le 1/2$. Suppose $f: B^n \to B^n$ is a homeomorphism with A as its fixed point set. Consider the family of continuous maps $f_t S^{n-1} \to S^{n-1}$ defined by setting

Received April 15, 1967.

$$f_t(P) = \frac{f(tP)}{\|f(tP)\|} \qquad \left(\frac{1}{2} \le t \le 1\right);$$

then

$$f_{1/2}(P) = P, \qquad f_1(P) = f(P).$$

Hence the restriction of f to S^{n-1} is homotopic to the identity yet has no fixed points, which is impossible for n odd.

THEOREM 3. For any non-empty closed set $A \subset B^2$, there exists a homeomorphism $f: B^2 \to B^2$ with A as its fixed point set.

Proof. Case 1. A contains an interior point of B^2 , which we may assume to be the origin. Define $f: B^2 \to B^2$ by setting for any $P = (x_1, x_2) \in B^2$, $f(P) = (x_1', x_2')$ with

(2)
$$x'_{1} = x_{1} \cos t + x_{2} \sin t \\ x'_{2} = -x_{1} \sin t + x_{2} \cos t$$
 where $t = d(P, A)$.

Clearly, f is continuous, with A as its fixed point set, and it is easy to verify that f is a homeomorphism of B^2 .

Case 2. A contains a boundary point of B^2 , which we may assume to be the point (1,0). We then replace (2) by

(3)
$$x'_1 - r = (x_1 - r)\cos t + x_2\sin t, \text{ where } r^2 = x_1^2 + x_2^2$$
$$x'_2 = -(x_1 - r)\sin t + x_2\cos t, \qquad t = d(P, A),$$

and argue as before.

REMARKS. 1. Theorem 3 is true for any B^{2n} , at least in Case 1. To see this, define $f: B^{2n} \to B^{2n}$ by putting $f(P) = (x'_1, x'_2, \dots, x'_{2n})$ where x'_1, x'_2 are defined by (2), x'_3, x'_4 by (2) with 1 replaced by 3 and 2 replaced by 4, etc. The construction of f in Case 2 for arbitrary B^{2n} remains to be supplied.

2. By taking as B^3 the points P with $x_1^2 + x_2^2 + (x_3 - 1)^2 \le 1$, considering the sections of this by planes through the x_1 -axis, and applying the transformation analogous to (3) to each of these, we see that if A is a closed subset of B^3 containing at least one boundary point of B^3 (in this case, the origin), then there exists a homeomorphism $f: B^3 \to B^3$ with A as its fixed point set. Presumably the same holds for any odd n (certainly for n = 1).

I am indebted to A. Dvoretzky and P. A. Smith for helpful suggestions.

Purdue University,

and University of California,

Berkeley, California, U.S.A.